
REDUCTION OF THERMODYNAMIC CONSTITUTIVE EQUATIONS 
FOR FLUID MIXTURES USING FORM INV ARIANCE 

Ivan SAMOHYL 

Department of Physical Chemistry, 
Prague Institute of Chemical Technology, 16628 Prague 6 

277 

Received May 12, 1988 
Accepted June 14, 1988 

Dedicated to Academician Eduard Hilla on the occasion of his 70th birthday. 

Balances of mass, momentum and its moment, energy, and entropy in Truesdell's model of 
n-constituent mixtures have the property of form invariance: a certain change of primitive proper­
ties by means of 2n - I arbitrary quantities does not cause a change in their form. This arbitrari­
ness can be used to make also the constitutive equations for partial thermodynamic quantities 
independent of the transport quantities (e.g. on temperature gradients or deformation rates). 
The classical method of Coleman and Noll used in rational thermodynamics of fluid mixtures 
namely permits to obtain such an independence with constitutive equations for thermodynamic 
quantities of mixtures only, and not for the partial quantities. 

In describing thermodynamic and transport phenomena in nonlinear continuum 
thermomechanics (rational thermodynamics), a mixture is often modelled by a super­
position of its constituents (Truesdell 1 ,2). Three principles are used! (p. 221; cf. 
refs3 .4), from which it follows that the partial properties (i.e. those of the constituents) 
are considered in this theory as primitive notions. Such a concept permits to utilize 
so-called form invariance5 •6 (cf. refs3 •4 ): the partial (mostly primitive) quantities 
can be changed in a certain way without changing the form of the balances (of mass, 
momentum and its moment, energy, and entropy). Then the other results also do not 
change in form (when the standard procedure involving the constitutive principles 
is used 1 •4 •3 •7 ), and it is thus possible to make sure that the partial quantities used 
at the start have preselected properties. 

Thus, for example, the form invariance in a fluid mixture with linear transport 
properties was used to make the partial thermodynamic properties identical with 
partial molar quantities known from classical thermochemistry of mixtures3 - 6 . 

Another example is given in the present paper. Using the standard procedure after 
Coleman and NoW we obtain that, in contrast to partial thermodynamic quantities, 
the thermodynamic quantities for a mixture are independent of the transport variables 
(e.g. temperature gradients or deformation rates). We shall show here that this 
property can be attained with the aid of the form invariance also in the case of partial 
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thermodynamic quantities, whereby a considerable simplification of their constitu­
tive equations is achieved. 

Balances and Entropic Inequality 

We shall deal with the balances of mass, momentum and its moment, energy, and 
the entropic inequality, used in the theory of mixtures2 - 6 ,8 based on the model of 
superimposed constituents of the mixture and the three above mentioned principles 
of Truesdell 1 • These relations are postulated for both the constituents and the mixture 
in the integral form and are given here in the local form for an n-constituent mixture. 
For simplicity, we restrict ourselves to mechanically nonpolar constituents (cf. Eq. 
(5)) and a single temperature for all constituents of the mixture (so that the balance 
of energy need be made only for the mixture1 ,3,4). 

The momentum balance for constituent a is 

(1) 

where (}~ denotes density of the constituent a ("weight" concentration), v~ its velocity, 
r~ its source due to chemical reactions (mass of constituent ct. formed or consumed 
per unit time in a unit volume), and t is time; div denotes, as usual, divergence in 
space coordinates. Subscripts ct. and y run through 1, 2, ... , nand p, f> through 1, 2, ... 
... , n - 1. 

The mass balance for the mixture is 

(2) 

The momentum balances for the constituents have the form 

(3) 

where T~ denotes partial stress tensor of constituent ct., b~ is the external volume force 
(e.g. gravitation) acting upon constituent ct., k~ is the interaction ( volume) force 
acting upon it and originating from the other constituents, and the last term ex­
presses the change of momentum due to chemical reactions. 

The momentum balance for the mixture is 

n 

I (k~ + r~v,) = 0 , (4) 
cx= 1 

and the balances of the moment of momentum for mechanically nonpolar consti-
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tuents oc = 1, . '" n have the form 

T" = TJ, (5) 

where the superscript T denotes transposition. The balance of the moment of mo­
mentum is obtained by summing Eq. (5) over all constituents. The energy balance 
has the form 

where u" denotes (specific) internal energy of constituent oc, 0" partial stretching 
tensor (symmetrical part of the velocity gradient of constituent oc), q heat flux, Q 
heat source (by radiation), and up diffusion velocity defined as 

(7) 

Equation (6) can be derived from the total (i.e. internal plus kinetic) energy balance 

" n 

= div L v"T" + L Q"b«· v" - div q + Q (8) 
a=l ,,=1 

by subtracting the balances (3) multiplied by constituent velocities. Finally, the 
entropic inequality has the form 

" O(} s " Q 
(1 == L ~ + Ldiv(}"slZv" + div(qjT) - - ~ 0 

",=1 ot ",=1 T 
(9) 

whose left-hand side represents the production of entropy (1, s" is the (specific) en­
tropy of constituent oc and T absolute temperature. 

Form Invariance 

The balances (1)-(6) and (9) have a property called form invariance3 - 6 : when we 
choose n - 1 arbitrary quantities u(P) (of the dimension of specific energy) and n - 1 
arbitrary quantities sIP) (of the dimension of specific entropy) and when we introduce 
new (primed) ones 

n-1 

u~ = U" + L (b p" - wp) U(/I) 
/1=1 

"-1 

S~ = S'" + I (15/111. - Wp) SIP) 
P=1 
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n-l n-t 

q' = q - TI I (lp(fJlJp - W/J) S(IJ)Up (12) 
p = 1 IJ= 1 

n-t 

k~ = ka - grad [{la I (fJap - wp)f(p)] (13) 
P=1 

n-t 

T~ = Til + {l" I (fJpa - wp)f({J)1 (14) 
P=1 

other quantities (t, ra, (la' Va' ba, Q, Da) in these balances remaining without change, 
i.e. 

r~ = r a , {l~ = (la etc. , (15) 

then the form of the balances (1) - (6) and (9) remains the same in the primed as 
well as in the non-primed quantities. Here, wa are mass ("weight") fractions 

n 

Wa == {l,/{l, I Wa = 1 , 
a=t 

where {l denotes density of the mixture 

further (cf. Eq. (22» 

(16), (17) 

(18) 

(19) 

0Pa. is Kronecker's delta (equal to zero for (X = n), (X = 1, ... , n, p = 1, ... , n - 1 as 
already mentioned, and 1 is unit tensor. 

This form invariance can be evidenced by direct substitution of Eqs. (10)-(15) 
into the balances (1)-(6) and (9) and by using the formula 

n n-1 

I (Ja I (Opa - wp) Y(P) = 0, (20) 
11= 1 p= t 

where Y(P) stands for u(P)' s(P)' fUl)· 

That the primed quantities can be substituted for the non-primed ones is obvious 
from the fact that the quantities (10)-(14) are primitive, not defined in this theory, 
and not directly measurable; hence it is possible to start from whichever (primed or 
not primed) primitive quantities (only mixtures with non-negligible interactions 
between constituents are considered, since otherwise the form invariance would be 
of no use). This is in contrast to other "form-invariant" quantities of the type (15), 
which are measurable similarly to, e.g., thermodynamic quantities, y, of the mixture 
(such as specific entropy s, internal energy u. or free energy f) defined as 

n 

y == I Wa.Y" 
a= 1 

(21) 
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where Ya stands for Sa' ua, fa, etc. The partial free energy fa is defined as 

(22) 

n n 

Similarly, the sums L kat, L Ta and other quantities (such as chemical potential in 
a=1 a=1 

f1uids 3 - 6 ) are form-invariant. It is apparent from Eq. (12) that the heat flux q is 
form-invariant in absence of diffusion (i.e. when ufJ = 0). In the general case, Eq. 
(12) reflects difficulties in the definition of the heat flux in the presence of diffusion, 
and its form expresses (with a suitable choice of S(6») all the usual formulations of the 
heat flux in the presence of diffusion used in irreversible thermodynamics9 • 

It follows further from the form invariance that, regardless of whether we start 
from the primed or non-primed quantities (10) - (14), we obtain the same form of the 
balances (1)-(6) and (9), and also the same form of further results, e.g. the same 
form of constitutive equations constructed as usual on the basis of constitutive 
principles of rational thermodynamics. It can be seen that the form invariance can 
be generalized, e.g., for the case of mechanically non-polar constituents of the mix­
ture, where Eq. (5) is invalid. 

Simplification of Constitutive Equations for Partial Thermodynamic 
Quantities with the Aid of Form Invariance 

The form invariance can be used suitably to modify the constitutive equations. 
Thus, it was shown3- 6 for a fluid mixture with linear transport properties that 
a suitable choice of u(fJ) and s(fJ) as functions of T, l!1' ... , l!n makes the partial thermo­
dynamic quantities Ya identical with partial thermodynamic quantities of classical 
thermochemistry of mixtures (i.e. with partial molar quantities in specific units). 
Without using the form invariance, namely, the partial thermodynamic quantities 
Ya are not form-invariant and do not satisfy the Gibbs-Duhem equations, except 
for the partial Gibbs energy (chemical potential in fluids). 

Further, we shall deal with some nonlinear models of mixtures, where the typically 
partial thermodynamic quantities Ua, Sa' and fat depend on all variables, whereas the 
thermodynamic quantities for the mixture, u, s, and f (21) depend only on some 
of them: they do not depend on non-equilibrium variables (which attain zero values 
in equilibrium). Using the form invariance, we shall show that it is possible to choose 
the partial thermodynamic quantities so as to be independent of the non-equilibrium 
variables, too. This is the case of a mixture of materials with memory of a differential 
type with any symmetry3 and a similar case described by Bowen lO, among others 
in a special case of such fluid mixture3 ,1 o. We shall show this on the last example, i.e. 
on a mixture of non-linear, (mechanically) non-polar liquids studied in detail in ref. 3, 
paragraph 40, and governed by the balances and other equations given above. Here, 
the partial specific thermodynamic quantities Ya = U,,' Sat, and fat are functions of all 
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variables 

(23) 

(this follows for fa from the definition (22)), where hy == grad fly, U~ denotes relative 
spin (difference between the spins of constituents (j and n; spin is the anti symmetrical 
part of the velocity gradient), and g == grad T. (For other quantities see Eqs (1), (6), 
(7), and (9); fly in Eq. (23) denotes dependence on fll"'" fln' u~ dependence on 
U 1, •.• , Un - 1 and so on.) In contrast to them. the specific thermodynamic quantities, 
y, defined for a mixture by Eq. (21), are simpler functions of the form 

(24) 

(for non-reacting mixtures, even hy is cancelled; cf. ref. 3). 
The quantities Dy, U~, u~, and g can acquire zero values (e.g. in equilibrium), 

therefore we define 

(25) 

(there, of course, 0 means that, e.g., Dy = 0 for any y value). Hence, 

(26) 

From this it follows that 

Y~(fly, h y, 0, 0, 0, T, 0) = O. (27) 

According to Eqs (21) and (26) 
n n 

y = L waY~ + L waY~ (28) 
a=l a=l 

and hence according to Eqs (24), (25), (16), and (18) the quantity 

n 

yN == L waY~ = yN(fly, h y, T) (29) 
a=l 

is a function of fly, h y, and T only. 

We now choose 2(n - 1) functions u(P). s(P) as follows (we denote them Y(/n): 

(30) 

for f3 = 1, ... , n - 1. By substitution into Eqs (10) and (11) we obtain after rearrange-
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ment the corresponding primed quantities 

(31) 

for IX = 1, ... , n. Hence, according to Eqs (25), (29), and (16) these quantities are 
only functions of T, f2 y, and hy 

(32) 

Further 
n n 

y' == L w .. y~ = L W .. Y .. = Y , (33) 
.. =1 .. =1 

i.e. the specific quantity of the mixture is form-invariant. 

We have thus shown that the constitutive equations for u .. and s .. can be chosen so 
that they depend only on f2y , hy and T. In this way also the other partial thermo­
dynamic quantities defined on the basis ofu .. and s .. , such as! .. (Eq. (22)) depend also 
on {!y, hy and T only; and according to Eq. (32) the corresponding quantities of the 
mixture, Eq. (21), are always invariant. Thus, the use of the form invariance ensures 
that the constitutive equations for partial thermodynamic quantities are considerably 
simplified, which results in simplification of further results given in references3 ,1o 

(e.g. (40·21) - (40' 25) in ref. 3). Additional rearrangement by using the form invariance 
of a similar type as at the beginning of this paragraph is, of course, possible. 
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